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but in terms of “transitions” from one space to another. The
approach requires coding of a detailed network, which is then
treated as a “graph.” Topological methods are used to charac-
terize the properties of the network (graph) through such mea-
sures as connectivity (number of other nodes that connect to
each node), depth (average number of steps between nodes),
and integration (ease of access from other nodes). Integration
is the key variable, whose formula compares an ideally con-
nected graph with the one in question to determine a measure
of accessibility for each node in the network. The quantified
measures of accessibility and connectivity are then used to gen-
erate movement “potentials,” which are then correlated with
counts. The correlations are then used to predict volumes on a
street-by-street basis for the defined study area.

Illustrative tests of Space Syntax in the United States have
occurred in the City of Oakland, CA, for pedestrian planning
(Raford and Ragland, 2003) and in relation to bicycle travel in
Cambridge, MA (McCahill & Garrick, 2008). In the McCahill &
Garrick example, the correlation of Space Syntax measures and
observed bicycle volumes in the Cambridge, MA, bicycle net-
work was tested. The “choice” segment indicator was used as the
means of predicting relative cyclist volumes on facilities, using
road centerline maps in place of the traditional “axial maps,”
and ArcGIS to compile information on segments from spatial
analysis and census statistics. A linear regression was developed
to reveal the best correlation between existing bike volume
counts at 16 intersections, census population, and employment
data to serve as productions and attractions, plus various Space
Syntax measures. The researchers determined that the method
was useful in predicting bike volumes in a network and could
be useful in designing more efficient networks.

In the City of Oakland, Raford and Ragland used Space
Syntax to forecast pedestrian volumes for safety analysis in
the City’s pedestrian master plan. Space Syntax was used to
leverage existing count data from a sample of 42 intersections
into forecasts of pedestrian volumes at 670 intersections city-
wide. However, because Space Syntax assumes an even popu-
lation distribution, the researchers supplemented the model
by using Census population and employment data to allow
for distortions caused by major generators. Discrepancies
in forecasting accuracy (remaining after the adjustments)
included a tendency to underestimate volumes on high-
volume streets and on streets connecting to three Bay Area
Rapid Transit (BART) stations. However, the researchers
believed that additional enhancements (e.g., including auto
volumes and speeds and using more specific land use charac-
teristics) could help improve accuracy.

Because of the lack of clarity in how Space Syntax works
and that it is proprietary, it has not been possible to fully evalu-
ate Space Syntax’s capabilities, so it is not included in the best-
practice recommendations. However, users can investigate
further if the features of the tool seem interesting or useful.
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Direct Demand Models

Direct demand models have been the accepted practice for
estimating pedestrian or bicycle facility demand for some time.
The NCHRP Project 08-78 background review recorded use
of these methods back in the 1970s (Benham & Patel, 1977).
Their structure is to explain observed levels of bicycle or pedes-
trian activity on facilities (links) or at intersection (points) as
recorded through counts, using a range of factors that describe
local context. This is usually done using regression modeling
techniques, with the calibrated models then applied back on all
or a subset of the sampled system of intersections or links to
assess their accuracy in replicating choices.

Variables often used to represent context in these types of
models include the following:

e Population or employment densities, sometimes differenti-
ated by type (e.g., populations differentiated by age, gender
or income, or employment categorized as office or retail).

o Population or employment activity levels within a nominal
buffer distance of % or %2 mile from the intersection.

e Land use mix, measured either through an index (e.g.,
entropy) or implicitly through corresponding buffered
activity levels.

o Characteristics of the facility, including type of bike path
and sidewalk existence and sufficiency.

o Interaction with vehicle traffic (e.g., adjacent speeds or vol-
umes, intersection approaches with crosswalks, sidewalk
widths, on-road versus off-road bike facilities).

e Transit availability (e.g., transit frequency and stop density).

e Major generators (e.g., proximity to universities, schools,
recreation, neighborhood shopping, major transit centers,
and civic centers).

Numerous examples of models in this genre are cited in
Table 4-2 and documented in Appendix 7 of the Contractor’s
Final Report under the Aggregate Demand Methods discussion.
Because each is unique, it is difficult to name one or two that
are exemplary; however, among those that have undergone the
most development and had access to the best data resources are
the Seamless Travel pedestrian and bicycle models developed
by Alta Planning & Design in San Diego (Jones, et al., 2010)
and the Santa Monica pedestrian and bicycle demand models
(Fehr & Peers, 2010).

Seamless Travel Models

In the Seamless Travel study, pedestrian and bicycle models
were developed to predict approach volumes at intersections
during the 7 to 9 A.M. period on weekdays. Manual counts from
asample of 80 intersections supported the analysis. Counts were
supplemented with traveler intercept surveys at 25 locations
to obtain additional data, although the surveys did not iden-
tify the type of trip in progress.



The Seamless pedestrian model is of the following form:
Pam =1.555+0.723 ED+0.526 PD-1.09 R(R? = 0.516)

where
Pyv = Morning peak pedestrian count
ED = Employment density within 0.5 mile
PD = Population density within 0.25 mile
R = Presence of retail within 0.5 mile

So the model predicts that A.M. peak-period walk trips will
increase in proportion to adjacent employment and popula-
tion density and decrease in the presence of retail activity. Even
though these are probably work-related trips, given the time of
day, it is not immediately clear why retail activity would have a
negative effect on walk trip levels. Employment density carries
a higher coefficient than population density, again presumably
related to these being primarily work trips, although the buffer
radii are different for population and employment and elastici-
ties were not provided.

The Seamless bicycle model has the following form:

Bam =—4.279+0.718 C+0.438 ED (R? =0.439)

where
Bam = Morning peak bike trips
C = Footage of Class I bicycle path within 0.25 mile
ED = Employment density within 0.25 mile

This bicycle model predicts an increase in bike trips based
on higher employment density and greater presence of Class 1
bikeways within Y4-mile of the count site.

Santa Monica Models

The pedestrian and bicycle models developed by Fehr &
Peers for Santa Monica predict volumes for the 5 to 6 PM peak
hour. The pedestrian model has the following form:

Py =222.18+0.00321 ED +3.675 BFpy +82.695 SDP
~0.00685 DO —5.699 SL (R? = 0.584)

where
Ppy = Evening peak pedestrian volume
ED = Employment density within %5 mile
BFpy = PM bus frequency
SDP = Intersection is within shopping district
DO = Distance from ocean
SL = Average speed limit on approaches

This equation predicts that PM peak-period walk trips will
increase in proportion to adjacent employment, with higher
rates of PM bus service, and if the intersection lies within a
shopping district. This equation predicts that PM peak-period
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walk trips will decline with increased distance from the ocean
and with higher adjacent auto speeds. In contrast to the Seam-
less Travel pedestrian model, this model sees a positive effect
from retail proximity, which may be due to a higher proportion
of non-work trips occurring during the PM peak.

The Santa Monica bicycle model has the following form:

Bpm =1.317+40.120 Ln ED+1.632 MXD +0.431 BN
+0.523 INT-4 (R2 =0.401)

where
By = Evening peak hour bike trips
Ln ED =Log of employment density within ¥ mile
MXD = Land use mix within % mile
BN = Proximity to bike routes (intersection is along a
bike route or at the intersection of two bike routes,
with higher weighting going to better classes of
bike facilities)
INT-4 = Four-legged intersection

This equation predicts an increase in bike trips based on
higher employment density, mixed land use, proximity to bike
routes, and if the intersection is four-way.

The appeal of these models lies in their simplicity and cus-
tom quality. Although not easy to construct, they do not require
advanced transportation modeling skills and are fairly easy to
understand and apply. Aside from the activity counts, most of
the data used to construct the context variables are generally
available, and model builders are often resourceful in designing
the models to use the data that they have.

The caveat with these models is that they trade directness and
simplicity for behavioral structure. In effect, they try to explain/
predict an aggregate quantity—activity counts in a particular
time period—with factors descriptive of the surrounding envi-
ronment. What results are relationships that may display strong
correlations with the activity variable, but cannot be readily
shown to “cause” the behavior represented in the counts (which
is itself an amalgam of travel activity).

What the NCHRP Project 08-78 research has shown is that
accessibility is the most significant determinant of choice, par-
ticularly for non-motorized travel, and representing accessi-
bility requires a deliberate effort to simultaneously account for
both the opportunities presented through the land use and the
ease and efficiency with which the modal networks connect
the traveler with these opportunities. It is difficult to apply this
relationship in count-based models given that the modeled
intersection or link is neither a trip production nor attraction.

Therefore, this guidebook suggests that use of these models
should be judicious in how they are developed and when they
are used. The following guidelines are suggested:

1. None of these models should be construed as transferrable.
Their coefficients are unique to how the models have been
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specified (variables included) and the specific location for
which they were developed. If an existing model presents
an appealing structure, the user is advised to re-estimate
the model(s) using identical data for the new study area.
The user needs to be aware of the uncertainties associated
with modeling “count” data. In almost all cases, the models
are blind to the travel behavior represented by the counts
(e.g., the purpose of the trip, the sociodemographic char-
acteristics of the traveler, the origin-destination of the trip,
and the existence of alternatives). Focusing the counts and
models on a particular time period (e.g., A.M. weekday
peak for work or mid-day weekend for recreation) can nar-
row the uncertainty as to the types of trips being observed,
but, for other time periods, the mix of trips being modeled
may be difficult to surmise.

Once the models are calibrated, the user should test their
reliability in predicting activity at individual locations and
overall for the study area. Although most of the models
reviewed have R? values of 0.5 or better, they may not be
particularly accurate at the level of the individual inter-
section or link. The Seamless Travel study experimented with
methods to adjust the base estimates to account for unusual
circumstances (that cannot be directly included in the

model), and it may prove worthwhile to review and consider
emulating these methods (see http://www.altaplanning.
com/caltrans+seamless+study.aspx).

4. Be judicious in the types of applications or decisions to be
supported by the models. For example, if measures of net-
work connectivity are not included in the model structure,
it would be misleading to estimate demand for a new or
improved facility without recognizing that some portion of
the new demand predicted may simply be a diversion from
some other facility. At the same time, a network improve-
ment that contributes to overall network connectivity may
well induce new travel on other portions of the network.

Given the above, it is recommended that the direct demand
tools be reserved for either quick estimates or screening in
advance of more comprehensive analysis, or for incremental
extrapolations from an existing situation. Regardless, the fore-
cast effort should be within the bounds of the explanatory
variables in the model and not be used for forecasting new
demand or changes within a network. For these types of appli-
cations, the user is advised to apply one of the earlier choice-
based tools (e.g., the GIS-Accessibility, MoPeD, PedContext,
or even the Portland Pedestrian model approach).







